
Rearchitecting the TCP Stack for
I/O-Offloaded Content Delivery

Taehyun Kim, Deondre Martin Ng, Junzhi Gong*,
Youngjin Kwon, Minlan Yu*, KyoungSoo Park

KAIST & *Harvard University

Increasing Demand for High-quality Video Streaming

2

 COVID-19 pandemic (2020~) – “more” rapid increase in video traffic

Global Video Traffic

0

100

200

300

400

2017 2022Ex
ab

yt
es

pe
r

m
on

th

(Cisco whitepaper 2022)

Increasing Demand for High-quality Video Streaming

2

 COVID-19 pandemic (2020~) – “more” rapid increase in video traffic

CDN server performance is critical for cost-effective service

Global Video Traffic

0

100

200

300

400

2017 2022Ex
ab

yt
es

pe
r

m
on

th

(Cisco whitepaper 2022)

Computing Hardware Development Trend

3

DISK CPU NIC

Computing Hardware Development Trend

3

DISK CPU NIC

Read() Send() Video to users

Computing Hardware Development Trend

3

1GbE
2005

150-200 IOPS 2 cores

DISK CPU NIC

Read() Send() Video to users

Computing Hardware Development Trend

3

1GbE
2005

150-200 IOPS 2 cores

+ Rapid performance improvement with IO devices

- Demise of Moore’s law for CPU advancement (since 2006)

DISK CPU NIC

Read() Send() Video to users

Computing Hardware Development Trend

3

2022

1GbE

400GbE

400x

2005
150-200 IOPS

A few 106 IOPS

~104x
2 cores

+ Rapid performance improvement with IO devices

- Demise of Moore’s law for CPU advancement (since 2006)

DISK CPU NIC

Read() Send() Video to users

Computing Hardware Development Trend

3

2022

1GbE

400GbE

400x

2005
150-200 IOPS

A few 106 IOPS

~104x
2 cores

64 cores

32x

+ Rapid performance improvement with IO devices

- Demise of Moore’s law for CPU advancement (since 2006)

DISK CPU NIC

Read() Send()

Read() Send()

Video to users

Video to users

CPU Consumption for HTTP Video Streaming Server

4

 Typical server operations
• Read an HTTP request
• Read a file chunk for the request
• Send the response

 Result
•

•

Benchmark setting
- nginx (v.1.80.0) on Linux
- 300KB files on 4x Optane NVMe
- 100Gbps NIC
- Single core of Xeon Silver 4210

CPU Consumption for HTTP Video Streaming Server

4

 Typical server operations
• Read an HTTP request
• Read a file chunk for the request
• Send the response

 Result
• Observation 1: CPU cycles are 100% utilized
•

Benchmark setting
- nginx (v.1.80.0) on Linux
- 300KB files on 4x Optane NVMe
- 100Gbps NIC
- Single core of Xeon Silver 4210

CPU Consumption for HTTP Video Streaming Server

4

 Typical server operations
• Read an HTTP request
• Read a file chunk for the request
• Send the response

 Result
• Observation 1: CPU cycles are 100% utilized
• Observation 2: data plane dominates CPU consumption

Benchmark setting
- nginx (v.1.80.0) on Linux
- 300KB files on 4x Optane NVMe
- 100Gbps NIC
- Single core of Xeon Silver 4210

Data plane: 72% Control plane: 28%

Disk IO Memory
Management Network IO open()

fstat()
Application

TCP control logic

CPU Consumption for HTTP Video Streaming Server

4

 Typical server operations
• Read an HTTP request
• Read a file chunk for the request
• Send the response

 Result
• Observation 1: CPU cycles are 100% utilized
• Observation 2: data plane dominates CPU consumption

Why CPU bottleneck for IO-bound workload?

Benchmark setting
- nginx (v.1.80.0) on Linux
- 300KB files on 4x Optane NVMe
- 100Gbps NIC
- Single core of Xeon Silver 4210

Data plane: 72% Control plane: 28%

Disk IO Memory
Management Network IO open()

fstat()
Application

TCP control logic

Root cause: “CPU-centric” OS Abstractions

5

 Modern OS designed with “implicit” assumptions
• CPU is fast but IO devices are slow
• CPU is never bottleneck for IO-bound workloads



•

•

•

•

Root cause: “CPU-centric” OS Abstractions

5

 Modern OS designed with “implicit” assumptions
• CPU is fast but IO devices are slow
• CPU is never bottleneck for IO-bound workloads

 Artifact: CPU-centric IO operations
• size_t read(fd, buf, size); // DiskMemory
• size_t write(fd, buf, size); // MemoryIO device
• All content must be brought to ”main” memory first!
• Memory (or CPU) becomes the bottleneck

Disk

MemoryCPU

Network Card

Root cause: “CPU-centric” OS Abstractions

5

 Modern OS designed with “implicit” assumptions
• CPU is fast but IO devices are slow
• CPU is never bottleneck for IO-bound workloads

 Artifact: CPU-centric IO operations
• size_t read(fd, buf, size); // DiskMemory
• size_t write(fd, buf, size); // MemoryIO device
• All content must be brought to ”main” memory first!
• Memory (or CPU) becomes the bottleneck

How to avoid CPU bottleneck for IO-bound workload?

Disk

MemoryCPU

Network Card

Opportunity in the Solution Space

6

 Modern PCIe devices support P2PDMA
• Peer-to-peer DMA without CPU intervention
• No main memory copy if the DMA devices have memory

 Programmability in IO devices
• SmartNICs & computational SSDs
• Arm SOC, FPGA-based, or ASIC-based

 Approach: SmartNIC as the hub for NVMe disk IOs

Disk

MemoryCPU

Network Card

P2P DMA

Opportunity in the Solution Space

6

 Modern PCIe devices support P2PDMA
• Peer-to-peer DMA without CPU intervention
• No main memory copy if the DMA devices have memory

 Programmability in IO devices
• SmartNICs & computational SSDs
• Arm SOC, FPGA-based, or ASIC-based

 Approach: SmartNIC as the hub for NVMe disk IOs

Key design issue: where to place TCP stack?

Disk

MemoryCPU

Network Card

P2P DMA

Challenges in Operating TCP Stack

7





•

Option1: TCP stack on CPU side
 No disk content available on CPU

Disk

MemoryCPU

Network Card

P2P DMA

TCP stack

?

Challenges in Operating TCP Stack

7

Option2: TCP stack on SmartNIC
 Performance limited by SmartNIC resources


•

Option1: TCP stack on CPU side
 No disk content available on CPU

Disk

MemoryCPU

Network Card

P2P DMA

TCP stack

?

?

Challenges in Operating TCP Stack

7

Option2: TCP stack on SmartNIC
 Performance limited by SmartNIC resources
 Lighttpd with Linux TCP on Bluefield-2: 12Gbps

• On Xeon Silver 4210: 59Gbps

Option1: TCP stack on CPU side
 No disk content available on CPU

Disk

MemoryCPU

Network Card

P2P DMA

TCP stack

?

?

Challenges in Operating TCP Stack

7

Option2: TCP stack on SmartNIC
 Performance limited by SmartNIC resources
 Lighttpd with Linux TCP on Bluefield-2: 12Gbps

• On Xeon Silver 4210: 59Gbps

Hybrid solution?
Separate IO-intensive Data Plane from TCP stack?

Option1: TCP stack on CPU side
 No disk content available on CPU

Disk

MemoryCPU

Network Card

P2P DMA

TCP stack

?

?

IO-TCP: Split TCP Stack Architecture for Content Delivery

8

SmartNIC IO-TCP StackHost IO-TCP Stack

TCP stack

 Separation of TCP control/data planes

IO-TCP: Split TCP Stack Architecture for Content Delivery

8

SmartNIC IO-TCP StackHost IO-TCP Stack

• Reliable data delivery
• Congestion control
• Flow control
• Header generation

Low latency control logic

TCP stack

 Separation of TCP control/data planes

IO-TCP: Split TCP Stack Architecture for Content Delivery

8

SmartNIC IO-TCP StackHost IO-TCP Stack

• Reliable data delivery
• Congestion control
• Flow control
• Header generation

• Read file from disk
• Send packet

Low latency control logic High throughput data operations

TCP stack

 Separation of TCP control/data planes

Client

IO-TCP Overview

9

 Provides 4 offload APIs for SmartNICexecution (offload_open(), offload_fstat(), offload_close(), offload_write())

1. Application calls offload APIs for remote execution
2. Host sends a special command to SmartNIC for each API
3. SmartNIC stack performs corresponding IO operations

CPU

NVMe SSDs

Host IO-TCP Stack

ApplicationControl Plane:
CPU

Data Plane:
SmartNIC & Disk P2PDMA Data stream

SmartNIC

SmartNIC IO-TCP Stack

IO-TCP based Web Server Workflow

10
Client

CPU

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

HTTP
response
headers

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

HTTP
response
headers

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

SEND

HTTP
response
headers

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

SEND

HTTP
response

body

HTTP
response
headers

OPEN

Request

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

IO-TCP based Web Server Workflow

10
Client

CPU

SEND

HTTP
response

body

HTTP
response
headers

OPEN

ACKRequest

ACKs bypass NIC stack

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()offload_open()

Control Plane:
CPU

Data Plane:
SmartNIC & Disk

File open/read
via P2P DMA

Host IO-TCP Stack

Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]
SEND command

(virtual data packet)

SmartNIC IO-TCP Stack

Host IO-TCP Stack

Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]
SEND command

(virtual data packet)

DISK

SmartNIC IO-TCP Stack

Host IO-TCP Stack

Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]

Eth IP TCP

SEND command
(virtual data packet)

1. Translate the payload of SENDcommand

[‘file id’ ‘offset’ ‘length’]

DISK

SmartNIC IO-TCP Stack

Host IO-TCP Stack

Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]

Eth IP TCP

SEND command
(virtual data packet)

1. Translate the payload of SENDcommand
2. Read file asynchronously from disk to the payload

[‘file id’ ‘offset’ ‘length’]File

DISK

(real data packet)

SmartNIC IO-TCP Stack

Host IO-TCP Stack

Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]

Eth IP TCP

SEND command
(virtual data packet)

1. Translate the payload of SENDcommand
2. Read file asynchronously from disk to the payload
3. Send out the packet

[‘file id’ ‘offset’ ‘length’]File

DISK

(real data packet)

SmartNIC IO-TCP Stack

Host IO-TCP Stack

Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]

Eth IP TCP

SEND command
(virtual data packet)

SmartNICHW
TSO Checksum Offloading TLS Offloading

1. Translate the payload of SENDcommand
2. Read file asynchronously from disk to the payload
3. Send out the packet

[‘file id’ ‘offset’ ‘length’]File

DISK

(real data packet)

IO-TCP Challenges

12

How to calculate accurate packet RTT ?
How to deal with retransmission ?

Challenges

IO-TCP Challenges

12

How to calculate accurate packet RTT ?
How to deal with retransmission ?

Challenges

More details in the paper

How to Handle Retransmission?

13





•

•

•

–

SEND

File
Long disk IO

Host
IO-TCP Stack

SmartNIC
IO-TCP Stack

Client

How to Handle Retransmission?

13

 Re-reading the disk for retransmission could be slow!


•

•

•

–

SEND SEND

Retransmission triggered

File
Long disk IO Repeat disk IO?

Host
IO-TCP Stack

SmartNIC
IO-TCP Stack

Client

How to Handle Retransmission?

13

 Re-reading the disk for retransmission could be slow!
 Our approach

• Keep the data on NIC memory until the data is confirmed to be delivered (ACK)
• Problem: only Host receives all the ACKs (for control logic)
•

–

SEND SEND

Retransmission triggered

ACK

Keep the fileFile
Long disk IO

Host
IO-TCP Stack

SmartNIC
IO-TCP Stack

Client

How to Handle Retransmission?

13

 Re-reading the disk for retransmission could be slow!
 Our approach

• Keep the data on NIC memory until the data is confirmed to be delivered (ACK)
• Problem: only Host receives all the ACKs (for control logic)
• Solution: periodic notification of ACKnowledgeD(ACKD) sequence numbers (Host  NIC)

– Required memory size <= window size (e.g., 375MB for 100Gbps NIC with 30ms of average RTT)

SEND SEND

Retransmission triggered

ACK

ACKD
When unACKDed size > threshold

File
Free ACKDed files

Keep the fileFile
Long disk IO

Host
IO-TCP Stack

SmartNIC
IO-TCP Stack

Client

Implementation
 Host stack: extended mTCP to support NIC offload

• 1,793 lines of code modification on mTCP
 NIC stack: based on NVIDIA Bluefield2 SmartNIC

• 1,853 lines of C code
• We implement TSO, scatter-gather IO, and TLS crypto offload

 Easy to port existing apps
– open(), fstat() and close()  offload_open(), offload_fstat() and offload_close()
– write()  offload_write()
– Porting Lighttpd server to IO-TCP: ~10 lines of code modification

14

Experiment Setup

 Baselines
• Lighttpd on Linux TCP with sendfile() (Kernel version: 4.14)
• Atlas: webserver on kernel-bypass TCP stack with raw disk access [1]

– Buffer-cache-free design
– FreeBSD 1.10 & Chelsio 100Gbps NIC

15[1] “Disk|Crypt|Net: rethinking the stack for high-performance video streaming.” SIGCOMM, 2017.

Server

Xeon Silver 4210 @ 2.2GHz, 10 cores
with 128GB DDR4

NVIDIA Bluefield-2 (100Gbps x 2)

Intel Optane 900P NVMe (20Gbps x 4)

Client
2 Clients

Max. 80Gbps

IO-TCP Performance - Plaintext

16

 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP

12.0

56.8 IO-TCP
Atlas
LinuxTCP

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

[1] “Disk|Crypt|Net: rethinking the stack for high-performance video streaming.” SIGCOMM, 2017.

Max. throughput of 4 NVMes

IO-TCP Performance - Plaintext

16

 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP

20.3

12.0

56.8 IO-TCP
Atlas
LinuxTCP

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

78.8

[1] “Disk|Crypt|Net: rethinking the stack for high-performance video streaming.” SIGCOMM, 2017.

Max. throughput of 4 NVMes

IO-TCP Performance - Plaintext

16

 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP

IO-TCP achieves Full BW of 4 NVMe disks with a single CPU core

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

78.1

20.3

12.0

56.8 IO-TCP
Atlas
LinuxTCP

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

78.8

[1] “Disk|Crypt|Net: rethinking the stack for high-performance video streaming.” SIGCOMM, 2017.

Max. throughput of 4 NVMes

IO-TCP Performance – TLS

17

 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP
 Cipher mode: AES-GCM 256

IO-TCP still reaches the max throughput for TLS traffic

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

77.4

6.4

12.5

44.2

37.4

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

IO-TCP
Atlas
LinuxTCP

[1] “Disk|Crypt|Net: rethinking the stack for high-performance video streaming.” SIGCOMM, 2017.

Max. throughput of 4 NVMes

Source of Performance Improvement

18

Separation of Control plane / Data plane
- No main memory read/write for IO

- No CPU cache eviction by DDIO

Source of Performance Improvement

18

Separation of Control plane / Data plane
- No main memory read/write for IO

- No CPU cache eviction by DDIO

Mitigated Cache & Memory contention
for Control plane

Separation achieves 27% lower LLC miss rate

Faster control plane
IPCof the control path improves by 58%

Source of Performance Improvement

18

Separation of Control plane / Data plane
- No main memory read/write for IO

- No CPU cache eviction by DDIO

Mitigated Cache & Memory contention
for Control plane

Separation achieves 27% lower LLC miss rate

Shorter e2e RTT  Larger window size
Overall Throughput Improvement

99.1

62.9

37.1
28.1 21.6 18.2

0
20
40
60
80

100

10 20 40 60 80 100

Re
l. T

hr
ou

gh
pu

t (
%)

Additional Delay by the control plane (μs)

Faster control plane
IPCof the control path improves by 58%

IO-TCP Overhead Evaluation

19

 Overhead factors
• Host-NIC communication overhead
• Performance limit of Arm-based subsystem on BF2
The fewer connections would be advantageous to CPU-only approach (Linux TCP)

4.32

17.63
36.78

6.37

9.78

9.99

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Connections

IO-TCP
Linux TCP

0.45

1.81
2.76

0.79
1.33

1.32

0

1

2

3

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Connections

IO-TCP
Linux TCP

300 KB files 10 KB files

Summary

20

 BIG Trend: IO device advancement outpaces the rate of CPU capacity growth

 IO-TCP: a split TCP stack architecture for a content delivery system
• CPU host stack carries out the control plane functionalities of a TCP stack
• NIC stack serves as data plane of a TCP stack

 IO-TCP achieves full bandwidth of 4 NVMe disks with a single CPU core
• Current bottleneck lies in SmartNICmemory bandwidth
• SmartNIC with higher memory BW will improve the throughput even more

– Bluefield-3 will achieve 140Gbps per NIC

 QUIC-based CDN can adopt our separated stack design as well

21

Thank you!

IO-TCP Performance – Varying File Sizes

22

46.4 51.1 56.8 54.7

78.1 79.2 78.8 79.5

64.1
76.6 78.1 75.3

0

20

40

60

80

100

100KB 300KB 500KB 1MB

Th
ro

ug
hp

ut
 (G

bp
s)

File Size

Plaintext

LinuxTCP Atlas IO-TCP

28.4 33.1 37.4 36.8
43.4 43.8 44.2 44.1

64.1
76.2 77.4 74.8

0

20

40

60

80

100

100KB 300KB 500KB 1MB

Th
ro

ug
hp

ut
 (G

bp
s)

File Size

TLS

LinuxTCP Atlas IO-TCP

IO-TCP Performance – Varying Number of Connections

23

78.3 79.3 79.0 77.4 79.1 79.8 79.5 80.6

0

20

40

60

80

100

1000 2000 3000 4000

Th
ro

ug
hp

ut
 (G

bp
s)

of Host CPU cores

TLS

1 2

78.8 79.4 78.9 77.5 79.1 80.0 79.7 81.5

0

20

40

60

80

100

1000 2000 3000 4000

Th
ro

ug
hp

ut
 (G

bp
s)

of Host CPU cores

Plaintext

1 2

Linux TCP vs. IO-TCP

24

Lighttpd setup Throughput (Gbps)
Linux TCP on Bluefield-2 only 11.98
Linux TCP on Bluefiend-2 and 1 CPU core 22.02
IO-TCPon Bluefield-2 and 1 CPU core 44.13

TCP Fairness

25

 Jain’s fairness index with varying number of connections
• IO-TCP: 0.91~0.97
• Linux TCP: 0.90~0.97

User-level TCP Stacks vs. IO-TCP

26

 Throughput with 500KB file delivery
• TAS: 9.0 Gbps
• mTCP: 21.4 Gbps
• F-Stack: 36.0 Gbps
• Linux TCP: 56.8 Gbps

 These stacks are not optimized for large-file content delivery
• Optimized for small messages
• Lacks of an implementation for sendfile() and a support for TSO

Asynchronous sendfile() on FreeBSD vs. IO-TCP

27

34.2

60.8 67.2 70.964
76.2 78.1 75.3

0

20

40

60

80

100

100KB 300KB 500KB 1MB

Th
ro

ug
hp

ut
 (G

bp
s)

File Size

Plaintext

FreeBSD-nginx IO-TCP

19.2
33.9 34.8 38.8

64.1
76.2 77.4 74.8

0

20

40

60

80

100

100KB 300KB 500KB 1MB

Th
ro

ug
hp

ut
 (G

bp
s)

File Size

TLS

FreeBSD-nginx IO-TCP

Retransmission Timer & RTT Measurement

28Client

CPU

SEND

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()

 Retransmission timer at the host stack
•

–

•

–

–

Retransmission Timer & RTT Measurement

28Client

CPU

SEND

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()

Disk I/O delay

 Retransmission timer at the host stack
• Problem: disk access delay is added

– Up to a few ms when backlogged
•

–

–

Retransmission Timer & RTT Measurement

28Client

CPU

SEND

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()

SEND
ECHO

Disk I/O delay

 Retransmission timer at the host stack
• Problem: disk access delay is added

– Up to a few ms when backlogged
• Solution: SEND ECHO packets to the host

–

–

Retransmission Timer & RTT Measurement

28Client

CPU

SEND

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()

SEND
ECHO

Disk I/O delay

 Retransmission timer at the host stack
• Problem: disk access delay is added

– Up to a few ms when backlogged
• Solution: SEND ECHO packets to the host

– Short & fixed delay (~3us in our setup)
– Negligible overhead: a SEND for 10s~100s MTUs

Short& Static delay

Retransmission Timer & RTT Measurement

29Client

CPU

SEND

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()

SEND
ECHO

 Retransmission timer at the host stack
• Problem: disk access delay is added

– Up to a few ms when backlogged
• Solution: SEND ECHO packet to the host

– Short and static delay (3us in our setup)
– Negligible overhead: a SEND for 10s~100s MTU

 RTT measurement with Timestamp option
•

Retransmission Timer & RTT Measurement

29Client

CPU

SEND

SmartNIC IO-TCP Stack

NVMe SSDs

Host IO-TCP Stack

Application
offload_write()

SEND
ECHO

 Retransmission timer at the host stack
• Problem: disk access delay is added

– Up to a few ms when backlogged
• Solution: SEND ECHO packet to the host

– Short and static delay (3us in our setup)
– Negligible overhead: a SEND for 10s~100s MTU

 RTT measurement with Timestamp option
• Add the static delay(3us) and the I/O delay to the 𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣

𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣′ + 3𝑢𝑢𝑢𝑢 + 𝐼𝐼/𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

CPU as a Bottleneck for NVMe

30

 With multiple NVMe disks, CPU can be a bottleneck
• Intel Xeon Silver 4210 (2.20GHz)
• 6x Intel Optane 900P
• Simple fio
• A single CPU core cannot even support 2 disks for 4K BS

0

20

40

60

80

100

1 2 3 4 5 6

CP
U

 U
til

iz
at

io
n

(%
)

Number of NVMe Devices

4K BS
8K BS
16K BS
32K BS
64K BS

	Rearchitecting the TCP Stack for �I/O-Offloaded Content Delivery
	Increasing Demand for High-quality Video Streaming
	Increasing Demand for High-quality Video Streaming
	Computing Hardware Development Trend
	Computing Hardware Development Trend
	Computing Hardware Development Trend
	Computing Hardware Development Trend
	Computing Hardware Development Trend
	Computing Hardware Development Trend
	CPU Consumption for HTTP Video Streaming Server
	CPU Consumption for HTTP Video Streaming Server
	CPU Consumption for HTTP Video Streaming Server
	CPU Consumption for HTTP Video Streaming Server
	Root cause: “CPU-centric” OS Abstractions
	Root cause: “CPU-centric” OS Abstractions
	Root cause: “CPU-centric” OS Abstractions
	Opportunity in the Solution Space
	Opportunity in the Solution Space
	Challenges in Operating TCP Stack
	Challenges in Operating TCP Stack
	Challenges in Operating TCP Stack
	Challenges in Operating TCP Stack
	IO-TCP: Split TCP Stack Architecture for Content Delivery
	IO-TCP: Split TCP Stack Architecture for Content Delivery
	IO-TCP: Split TCP Stack Architecture for Content Delivery
	IO-TCP Overview
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	IO-TCP based Web Server Workflow
	Key Operation for Offloading: SEND Command
	Key Operation for Offloading: SEND Command
	Key Operation for Offloading: SEND Command
	Key Operation for Offloading: SEND Command
	Key Operation for Offloading: SEND Command
	Key Operation for Offloading: SEND Command
	IO-TCP Challenges
	IO-TCP Challenges
	How to Handle Retransmission?
	How to Handle Retransmission?
	How to Handle Retransmission?
	How to Handle Retransmission?
	Implementation
	Experiment Setup
	IO-TCP Performance - Plaintext
	IO-TCP Performance - Plaintext
	IO-TCP Performance - Plaintext
	IO-TCP Performance – TLS
	Source of Performance Improvement
	Source of Performance Improvement
	Source of Performance Improvement
	IO-TCP Overhead Evaluation
	Summary
	슬라이드 번호 60
	IO-TCP Performance – Varying File Sizes
	IO-TCP Performance – Varying Number of Connections
	Linux TCP vs. IO-TCP
	TCP Fairness
	User-level TCP Stacks vs. IO-TCP
	Asynchronous sendfile() on FreeBSD vs. IO-TCP
	Retransmission Timer & RTT Measurement
	Retransmission Timer & RTT Measurement
	Retransmission Timer & RTT Measurement
	Retransmission Timer & RTT Measurement
	Retransmission Timer & RTT Measurement
	Retransmission Timer & RTT Measurement
	CPU as a Bottleneck for NVMe

