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 COVID-19 pandemic (2020~) – “more” rapid increase in video traffic
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Increasing Demand for High-quality Video Streaming

2

 COVID-19 pandemic (2020~) – “more” rapid increase in video traffic

CDN server performance is critical for cost-effective service
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• Read an HTTP request
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4

 Typical server operations
• Read an HTTP request
• Read a file chunk for the request
• Send the response

 Result
• Observation 1: CPU cycles are 100% utilized
• Observation 2: data plane dominates CPU consumption

Why CPU bottleneck for IO-bound workload?

Benchmark setting
- nginx (v.1.80.0) on Linux
- 300KB files on 4x Optane NVMe
- 100Gbps NIC
- Single core of Xeon Silver 4210

Data plane: 72% Control plane: 28%

Disk IO Memory
Management Network IO open()

fstat()
Application

TCP control logic
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 Modern OS designed with “implicit” assumptions
• CPU is fast but IO devices are slow
• CPU is never bottleneck for IO-bound workloads

 Artifact: CPU-centric IO operations
• size_t read(fd, buf, size); // DiskMemory
• size_t write(fd, buf, size); // MemoryIO device
• All content must be brought to ”main” memory first!
• Memory (or CPU) becomes the bottleneck

How to avoid CPU bottleneck for IO-bound workload?
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 Modern PCIe devices support P2PDMA
• Peer-to-peer DMA without CPU intervention
• No main memory copy if the DMA devices have memory

 Programmability in IO devices
• SmartNICs & computational SSDs
• Arm SOC, FPGA-based, or ASIC-based

 Approach: SmartNIC as the hub for NVMe disk IOs

Key design issue: where to place TCP stack?
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Option2: TCP stack on SmartNIC
 Performance limited by SmartNIC resources
 Lighttpd with Linux TCP on Bluefield-2: 12Gbps

• On Xeon Silver 4210: 59Gbps

Hybrid solution? 
Separate IO-intensive Data Plane from TCP stack?

Option1: TCP stack on CPU side
 No disk content available on CPU

Disk

MemoryCPU

Network Card

P2P DMA

TCP stack 

?

?
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IO-TCP: Split TCP Stack Architecture for Content Delivery

8

SmartNIC IO-TCP StackHost IO-TCP Stack

• Reliable data delivery
• Congestion control
• Flow control
• Header generation

• Read file from disk
• Send packet

Low latency control logic High throughput data operations

TCP stack 

 Separation of TCP control/data planes
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IO-TCP Overview
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 Provides 4 offload APIs for SmartNICexecution (offload_open(), offload_fstat(), offload_close(), offload_write())

1. Application calls offload APIs for remote execution
2. Host sends a special command to SmartNIC for each API
3. SmartNIC stack performs corresponding IO operations

CPU

NVMe SSDs

Host IO-TCP Stack

ApplicationControl Plane:
CPU

Data Plane:
SmartNIC & Disk P2PDMA Data stream

SmartNIC

SmartNIC IO-TCP Stack
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Key Operation for Offloading: SEND Command

11

Eth IP TCP [‘file id’ ‘offset’ ‘length’]

Eth IP TCP

SEND command
(virtual data packet)

SmartNICHW
TSO Checksum Offloading TLS Offloading

1. Translate the payload of SENDcommand
2. Read file asynchronously from disk to the payload
3. Send out the packet

[‘file id’ ‘offset’ ‘length’]File

DISK

(real data packet)
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More details in the paper
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How to Handle Retransmission?

13

 Re-reading the disk for retransmission could be slow!
 Our approach

• Keep the data on NIC memory until the data is confirmed to be delivered (ACK)
• Problem: only Host receives all the ACKs (for control logic)
• Solution: periodic notification of ACKnowledgeD(ACKD) sequence numbers (Host  NIC)

– Required memory size <= window size (e.g., 375MB for 100Gbps NIC with 30ms of average RTT )

SEND SEND

Retransmission triggered

ACK

ACKD
When unACKDed size > threshold

File
Free ACKDed files

Keep the fileFile
Long disk IO

Host 
IO-TCP Stack

SmartNIC
IO-TCP Stack

Client



Implementation
 Host stack: extended mTCP to support NIC offload

• 1,793 lines of code modification on mTCP
 NIC stack: based on NVIDIA Bluefield2 SmartNIC

• 1,853 lines of C code
• We implement TSO, scatter-gather IO, and TLS crypto offload

 Easy to port existing apps 
– open(), fstat() and close()  offload_open(), offload_fstat() and offload_close()
– write()  offload_write()
– Porting Lighttpd server to IO-TCP: ~10 lines of code modification

14



Experiment Setup

 Baselines
• Lighttpd on Linux TCP with sendfile() (Kernel version: 4.14)
• Atlas: webserver on kernel-bypass TCP stack with raw disk access [1]

– Buffer-cache-free design
– FreeBSD 1.10 & Chelsio 100Gbps NIC

15[1] “Disk|Crypt|Net: rethinking the stack for high-performance video streaming.” SIGCOMM, 2017.

Server

Xeon Silver 4210 @ 2.2GHz, 10 cores 
with 128GB DDR4

NVIDIA Bluefield-2 (100Gbps x 2)

Intel Optane 900P NVMe (20Gbps x 4)

Client
2 Clients

Max. 80Gbps
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 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP
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 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP
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IO-TCP Performance – TLS
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 500KB video file chunks (disk bound)
 Lighttpd ported to IO-TCP
 Cipher mode: AES-GCM 256

IO-TCP still reaches the max throughput for TLS traffic
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Separation of Control plane / Data plane
- No main memory read/write for IO

- No CPU cache eviction by DDIO

Mitigated Cache & Memory contention 
for Control plane

Separation achieves 27% lower LLC miss rate

Shorter e2e RTT  Larger window size 
Overall Throughput Improvement
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Faster control plane
IPCof the control path improves by 58%



IO-TCP Overhead Evaluation
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 Overhead factors
• Host-NIC communication overhead
• Performance limit of Arm-based subsystem on BF2
The fewer connections would be advantageous to CPU-only approach (Linux TCP)
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Summary

20

 BIG Trend: IO device advancement outpaces the rate of CPU capacity growth

 IO-TCP: a split TCP stack architecture for a content delivery system 
• CPU host stack carries out the control plane functionalities of a TCP stack
• NIC stack serves as data plane of a TCP stack

 IO-TCP achieves full bandwidth of 4 NVMe disks with a single CPU core
• Current bottleneck lies in SmartNICmemory bandwidth
• SmartNIC with higher memory BW will improve the throughput even more 

– Bluefield-3 will achieve 140Gbps per NIC

 QUIC-based CDN can adopt our separated stack design as well
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Thank you!
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IO-TCP Performance – Varying Number of Connections
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Linux TCP vs. IO-TCP
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Lighttpd setup Throughput (Gbps)
Linux TCP on Bluefield-2 only 11.98
Linux TCP on Bluefiend-2 and 1 CPU core 22.02
IO-TCPon Bluefield-2 and 1 CPU core 44.13



TCP Fairness
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 Jain’s fairness index with varying number of connections
• IO-TCP: 0.91~0.97
• Linux TCP: 0.90~0.97



User-level TCP Stacks vs. IO-TCP

26

 Throughput with 500KB file delivery
• TAS: 9.0 Gbps
• mTCP: 21.4 Gbps
• F-Stack: 36.0 Gbps
• Linux TCP: 56.8 Gbps

 These stacks are not optimized for large-file content delivery
• Optimized for small messages
• Lacks of an implementation for sendfile() and a support for TSO



Asynchronous sendfile() on FreeBSD vs. IO-TCP
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Retransmission Timer & RTT Measurement

28Client
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SEND
ECHO

Disk I/O delay

 Retransmission timer at the host stack
• Problem: disk access delay is added 

– Up to a few ms when backlogged
• Solution: SEND ECHO packets to the host

– Short & fixed delay (~3us in our setup)
– Negligible overhead: a SEND for 10s~100s MTUs

Short& Static delay
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– Up to a few ms when backlogged
• Solution: SEND ECHO packet to the host

– Short and static delay (3us in our setup)
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 RTT measurement with Timestamp option
•
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 Retransmission timer at the host stack
• Problem: disk access delay is added 

– Up to a few ms when backlogged
• Solution: SEND ECHO packet to the host

– Short and static delay (3us in our setup)
– Negligible overhead: a SEND for 10s~100s MTU

 RTT measurement with Timestamp option
• Add the static delay(3us) and the I/O delay to the 𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣

𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣′ + 3𝑢𝑢𝑢𝑢 + 𝐼𝐼/𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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 With multiple NVMe disks, CPU can be a bottleneck
• Intel Xeon Silver 4210 (2.20GHz)
• 6x Intel Optane 900P
• Simple fio
• A single CPU core cannot even support 2 disks for 4K BS
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